H3K79 methylation: a new conserved mark that accompanies H4 hyperacetylation prior to histone-to-protamine transition in Drosophila and rat
نویسندگان
چکیده
During spermiogenesis, haploid spermatids undergo extensive chromatin remodeling events in which histones are successively replaced by more basic protamines to generate highly compacted chromatin. Here we show for the first time that H3K79 methylation is a conserved feature preceding the histone-to-protamine transition in Drosophila melanogaster and rat. During Drosophila spermatogenesis, the Dot1-like methyltransferase Grappa (Gpp) is primarily expressed in canoe stage nuclei. The corresponding H3K79 methylation is a histone modification that precedes the histone-to-protamine transition and correlates with histone H4 hyperacetylation. When acetylation was inhibited in cultured Drosophila testes, nuclei were smaller and chromatin was compact, Gpp was little synthesized, H3K79 methylation was strongly reduced, and protamines were not synthesized. The Gpp isoform Gpp-D has a unique C-terminus, and Gpp is essential for full fertility. In rat, H3K79 methylation also correlates with H4 hyperacetylation but not with active RNA polymerase II, which might point towards a conserved function in chromatin remodeling during the histone-to-protamine transition in both Drosophila and rat.
منابع مشابه
P-209: Decreased Expression of Histone Acetyltransferase CDY1 Gene in Testis Tissue May Lead to Decreased Expression of Transition Protein (TNP) and Protamine (PRM) Genes,Causing Male Infertility
Background: Infertility is a complex medical problem. About 15% of couples are infertile, and male infertility being involved in roughly 50% of the cases. Among these, many cases are associated with a severe impairment of spermatogenesis. During the last stage of spermatogenesis (spermiogenesis), sperm chromatin endures complex modifications in which histones are lost and depositioned with tran...
متن کاملPreviously uncharacterized histone acetyltransferases implicated in mammalian spermatogenesis.
During spermiogenesis (the maturation of spermatids into spermatozoa) in many vertebrate species, protamines replace histones to become the primary DNA-packaging protein. It has long been thought that this process is facilitated by the hyperacetylation of histone H4. However, the responsible histone acetyltransferase enzymes are yet to be identified. CDY is a human Y-chromosomal gene family exp...
متن کاملTSSK6 is required for γH2AX formation and the histone-to-protamine transition during spermiogenesis.
Spermiogenesis includes transcriptional silencing, chromatin condensation and extensive morphological changes as spermatids transform into sperm. Chromatin condensation involves histone hyperacetylation, transitory DNA breaks, histone H2AX (also known as H2AFX) phosphorylation at Ser139 (γH2AX), and replacement of histones by protamines. Previously, we have reported that the spermatid protein k...
متن کاملHeterologous expression reveals distinct enzymatic activities of two DOT1 histone methyltransferases of Trypanosoma brucei.
Dot1 is a highly conserved methyltransferase that modifies histone H3 on the nucleosome core surface. In contrast to yeast, flies, and humans where a single Dot1 enzyme is responsible for all methylation of H3 lysine 79 (H3K79), African trypanosomes express two DOT1 proteins that methylate histone H3K76 (corresponding to H3K79 in other organisms) in a cell-cycle-regulated manner. Whereas DOT1A ...
متن کاملTransition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis in Drosophila.
In higher organisms, the chromatin of sperm is organised in a highly condensed protamine-based structure. In pre-meiotic stages and shortly after meiosis, histones carry multiple modifications. Here, we focus on post-meiotic stages and show that also after meiosis, histone H3 shows a high overall methylation of K9 and K27 and we hypothesise that these modifications ensure maintenance of transcr...
متن کامل